
2-Cyano-1-t-butylethyl or 2-cyano-1-(1,1-diethyl-3-
butenyl)ethyl 3'-O-phosphorimidazolidite of 5'-O-protected
nucleoside was prepared in situ by the use of 2-cyano-1-t-
butylethyl or 2-cyano-1-(1,1-diethyl-3-butenyl)ethyl phospho-
robisimidazolidite as a new phosphitylating reagent.  The phos-
phorimidazolidites were found to be key intermediates for
preparing 5'-O-protected nucleoside 3'-O-monoalkylphospho-
ramidites in situ useful in the solid-phase oligonucleotide syn-
thesis, and for synthesizing conveniently 3'-OH free dinucleo-
side phosphates and phosphorothioates in solution.

The phosphoramidite method is most widely used for the
synthesis of oligonucleotide in solution and on a solid support.1

In this approach, the 2-cyanoethyl group has been proved to be
an useful protecting group for the internucleotide linkage.2

We wish to present here three developmental works for
broadening the scope in the 2-cyanoethyl phosphoramidite
chemistry: (i) a new phosphitylating reagent, 2-cyano-1-t-butyl-
ethyl or 2-cyano-1-(1,1-diethyl-3-butenyl)ethyl phosphorobis-
imidazolidite 1, is used in in situ generation of 5’-O-protected
nucleoside 3'-O-phosphorimidazolidite 3; (ii) the phosphorimi-
dazolidite 3 serves as a key intermediate for the preparation of a
new type of the nucleoside 3'-O-phoshoromonoalkylamidite 4;
(iii) the imidazolidite 3 is used for the selective introduction of
the 3'-5' internucleotide linkage by the reaction with a 3',5'-
O,O-unprotected nucleoside 5. 

A general method of preparation of 1 and 3 is represented
in Scheme 1.  The reaction of the phosphorodichloridite 6 (R1 =
t-butyl or 1,1-diethyl-3-butenyl)3 with 1-(trimethylsilyl)imida-
zole in a 1 : 2.2 ratio in toluene, followed by evaporation under
reduced pressure to dryness, gave 14 quantitatively as an oil.5

The treatment of 1 with 1.03 equivalents of 5'-O-(4,4'-
dimethoxytrityl(DMTr))-nucleoside 2 for 1 h at room tempera-
ture produced the corresponding imidazolidite 3 in ca. 97%
yield (based on 1).6 This indicates that the reaction of 1 with 2
proceeds selectively before the produced 3 reacts with 2 to give
the 3'-3' dinucleoside phosphite.  This would be caused by the
steric hindrance of the phosphorus protecting group.7

The compound 3 was converted to the phosphoromono-
alkylamidite 4 quantitatively by adding 1 equivalent of the cor-
responding primary amine (Scheme 1).  The monoalkylamidite
4 obtained was useful for the solid-phase oligonucleotide syn-
thesis using an automated synthesizer8 without any purification.
For example, the thymidine icosamer (d-T20) was synthesized
in an average coupling yield of 99.1% by the use of in situ pre-
pared 4 (R1 = t-C4H9, R

2 = i-C3H7)
9 as a monomer unit.

In addition, 3 was selectively coupled with the 5'-hydroxyl
group of a 3',5'-O,O-unprotected nucleoside 5 to give the corre-
sponding triester 710 (Table 1).  Thus, the reaction of 3 with

1.1-1.3 equivalents of 5 in chloroform/pyridine (1/2, v/v) (room
temperature, several hours) afforded 7 in good yields (based on
3).  The phosphite triester 7 was readily oxidized with
iodine/water to give the phosphate derivatives.  Thus, the treat-
ment of crude 7 prepared as mentioned above with 1.2 equiva-
lents of iodine in water/THF (1/10, v/v) for 0.5 h at room tem-
perature produced the phosphate 8 essentially quantitatively.11

Furthermore, the reaction of crude 7 with elemental sulfur gave
the phosphorothioate derivatives 9 (Table 1).12

The 2-cyano-1-t-butylethyl or 2-cyano-1-(1,1-diethyl-3-
butenyl)ethyl group of the internucleotide phosphate and phos-
phorothioate was removed as readily as the 2-cyanoethyl group
in concetrated aqueous ammonia/pyridine (1/1, v/v) (room tem-
perature, < 1 h).
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In conclusion, the in situ preparation of the phosphitylating
reagents and the high selectivities in the phosphitylating reac-
tions would make this methodology afford a new route to a
facile oligonucleotide synthesis.
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